Deep learning has been applied to MRI image reconstruction successfully. Most existing works require labeled ground-truth images to learn network parameters for image reconstruction, which is not practical in some MR applications where acquisition of fully sampled images takes too long. In this abstract, we propose a novel unsupervised deep neural network for reconstruction from undersampled data. The proposed network, named URED-net, is built upon conventional ADMM algorithm for compressed sensing reconstruction, but incorporating noise2noise, an unsupervised deep denoising network. The experimental results demonstrate proposed URED-net is superior to the standard noise2noise network with and without ground-truth images for training.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords