Meeting Banner
Abstract #3618

Multi-objective Deep Learning for Joint Estimation and Detection Tasks in MRI

Zhiyang Fu1, Maria I Altbach2, Diego R Martin2, and Ali Bilgin1,2,3
1Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States, 2Department of Medical Imaging, University of Arizona, Tucson, AZ, United States, 3Biomedical Engineering, University of Arizona, Tucson, AZ, United States

MR images are often reconstructed first and then used for medical image analysis tasks such as segmentation or classification. This sequential procedure can compromise the performance of the image analysis task. In this work, we propose a multi-task learning framework that jointly reconstructs underlying images and detects multiple sclerosis lesions. This framework outperforms the conventional sequential processing pipeline. We also introduce a multi-objective optimization as an effective and automated approach to balance the trade-off among multi-task losses. Experimental results suggest that taking into account subsequent detection tasks during image reconstruction may lead to enhanced detection performance.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords