Meeting Banner
Abstract #0094

On Comparability and Reproducibility of Myelin Sensitive Imaging Techniques

Tom Hilbert1,2,3, Lucas Soustelle4, Gian Franco Piredda1,2,3, Thomas Troalen5, Stefan Sommer6,7, Arun Joseph8,9,10, Reto Meuli2, Jean-Philippe Thiran2,3, Guillaume Duhamel4, Olivier M. Girard4, and Tobias Kober1,2,3
1Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare, Lausanne, Switzerland, 2Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland, 3LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 4Aix Marseille Univ, CNRS, CRMBM, Marseille, France, 5Siemens Healthcare SAS, Saint-Denis, France, 6Siemens Healthcare, Zurich, Switzerland, 7Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland, 8Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare, Bern, Switzerland, 9Translational Imaging Center, Sitem-Insel, Bern, Switzerland, 10Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland

A reliable and non-invasive measurement of myelin content in the brain is of high importance for neurodegenerative diseases such as multiple sclerosis. To this end, various methods have been developed over the past years with different advantages and shortcomings. In this work, six widely used methods are compared and tested for reproducibility: (i) longitudinal relaxation rate, (ii) magnetization transfer ratio, (iii) macromolecular proton fraction, (iv) inhomogeneous magnetization transfer saturation, (v) myelin water fraction, and (vi) inversion recovery at ultra-short echo time. This comparison may facilitate an informed decision on which myelin imaging techniques should be used in future studies.

This abstract and the presentation materials are available to members only; a login is required.

Join Here