This study explores the prediction of pathologic complete response (pCR) using tumor-derived textural features in breast cancer patients receiving neoadjuvant chemotherapy. Textural features were generated from increasingly restricted tumor masks applied on DCE-MRI signal enhancement ratio maps. Elastic net and random forests models were trained on features from baseline and early treatment timepoints, resulting in minimal differences in AUC between percent enhancement segmentation thresholds and a mean AUC of 0.68 (range 0.60-0.75). Our analysis suggests that, for the prediction of pCR, textural features derived from strongly enhancing regions dominate over those from regions of lower enhancement.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords