Meeting Banner
Abstract #0405

Random matrix theory denoising minimizes cross-scanner,-protocol variability and maximizes repeatability of higher-order diffusion metrics

Benjamin Ades-Aron1, Santiago Coelho1, Jelle Veraart1, Gregory Lemberskiy1, Genevieve Barroll1, Steven Baete1, Timothy Shepherd1, Dmitry S. Novikov1, and Els Fieremans1
1Radiology, NYU School of Medicine, New York, NY, United States

Translation of diffusion MRI-derived quantitative biomarkers into clinical decision making has been hampered by within-scanner and cross-scanner variability. We compare intra-scan, cross-scan, and cross-protocol variability of multi-shell diffusion MRI for three subjects and evaluated two Random Matrix Theory (RMT)-based denoising techniques to enhance repeatability. Without denoising, best scan-rescan repeatability was found for intra-scanner measurements with the highest SNR (shortest TE), RMT-based denoising greatly reduced variability across scanners and TE, resulting in coefficients of variation about 5% for all comparisons. Increased precision across scanners and protocols should increase statistical power and further enable clinical trials of quantitative higher-order diffusion MRI.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords