Meeting Banner
Abstract #0421

Imaging renal fibrosis in an oxalate induced chronic kidney disease model

Luke Xie1, Aaron K Wong2, Rohan S. Virgincar1, Patrick Caplazi3, Vineela D. Gandham1, Alex J. De Crespigny4, Robby M. Weimer1, and Hans D. Brightbill2
1Biomedical Imaging, Genentech, South San Francisco, CA, United States, 2Translational Immunology, Genentech, South San Francisco, CA, United States, 3Pathology, Genentech, South San Francisco, CA, United States, 4Clinical Imaging Group, Genentech, South San Francisco, CA, United States

Chronic kidney disease (CKD) is a significant global health problem with fibrosis being a common pathway of disease progression. While MRI is sensitive to fibrosis, the relationship to ultrastructural underpinnings is not well understood. In this study, we evaluate an oxalate induced CKD model and determine the correlation of MRI metrics with high-resolution terminal endpoints. We find that FA and AD in the medulla are most correlated with fibrosis pathologies, new hydroxyproline, and inflammatory and fibrotic gene expression. These results show that MRI can detect fibrosis and that the signal change is related to interstitial fibrosis and nephron ultrastructure.

This abstract and the presentation materials are available to members only; a login is required.

Join Here