Chemical shift encoding-based (CSE) water-fat separation techniques are becoming more common in the study of bone marrow changes as they allow the simultaneous assessment of tissue fat-fraction and R2*. A typical acquisition strategy in CSE-MRI aims to minimize the first TE to increase SNR. However, the R2* decay in the presence of trabecular bone microstructure is known to be nontrivial due to the occurrence of the static dephasing regime. The present work investigates, with the help of UTE acquisitions, the quantification errors of R2* and PDFF maps in trabecularized bone marrow due to the presence of the static dephasing regime.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords