Resting-state fMRI has the clinical potential as diagnostic and prognostic markers because of its easy implementation/standardization in data acquisitions, and its ability to parcellate functionally connected neural networks. It is of importance to examine whether the task-free spontaneous activity could be used to predict individuals’ task-induced activation. Here we proposed a graph convolutional network-based framework which utilized the information of the brain connections for the convolution step, and showed the ability of using resting-state fMRI to predict individual differences in activations of tasks from human connectome project. This framework could be extended to other resting-state fMRI researches.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords