Multicompartmental diffusion modeling shows promise for overcoming the limitations of conventional DWI methods and may help to improve the clinical evaluation of prostate-cancer bone involvement. In this study, we applied multicompartmental modeling to develop an empirical tissue classifier for identifying bone lesions in whole-body DWI. The proposed classifier relates signal contributions from model compartments with lower diffusion coefficients to the likelihood that such contributions are from cancerous tissue. This approach proved effective for detecting metastatic lesions in whole-body DWI data, considerably outperforming a classifier based on conventional ADC values.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords