Meeting Banner
Abstract #0734

A Magnetic Resonance Imaging Simulation Framework of the Developing Fetal Brain

Hélène Lajous1,2, Tom Hilbert1,3,4, Christopher W. Roy1, Sébastien Tourbier1, Priscille de Dumast1,2, Yasser Alemán-Gómez1, Thomas Yu4, Patric Hagmann1, Mériam Koob1, Vincent Dunet1, Tobias Kober1,3,4, Matthias Stuber1,2, and Meritxell Bach Cuadra1,2,4
1Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland, 2CIBM Center for Biomedical Imaging, Lausanne, Switzerland, 3Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare, Lausanne, Switzerland, 4Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Accurate characterization of in utero human brain maturation is critical. However, the limited number of exploitable magnetic resonance acquisitions not corrupted by motion in this cohort of sensitive subjects hinders the validation of advanced image processing techniques. Numerical simulations can mitigate these limitations by providing a controlled environment with a known ground truth. We present a flexible framework that simulates magnetic resonance acquisitions of the fetal brain in a realistic setup including stochastic motion. From simulated images comparable to clinical acquisitions, we assess the accuracy and robustness of super-resolution fetal brain magnetic resonance imaging with respect to noise and motion.

This abstract and the presentation materials are available to members only; a login is required.

Join Here