Multi-contrast MRI offers us images with complementary diagnostic information. Despite the dramatic difference in contrast, multi-contrast images often share highly correlated structure information. A deep learning (DL) based strategy is proposed to denoise multi-contrast MR images with flexible noise-levels using residual U-Net. This method utilizes the structural similarities across contrasts by simultaneously denoising multiple contrasts while existing single-contrast MRI denoising methods neglect the analogous structure information. The proposed method outperforms BM3D in terms of better noise reduction and details preservation. More importantly, we introduce a noise-level map that can be manually set to fit the different noise levels.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords