Magnetic Resonance (MR) parametric mapping like $$$T_1$$$ , $$$T_2$$$, proton density is a powerful tool for biology tissue characterization, which is useful for clinical application such as diagnosis of pathologies including Alzheimer’s disease and multiple sclerosis1, evaluation of myocardial fibrosis2 and assessment of knee cartilage damage3. However the long scan time makes it challenging for practical clinical application. The purpose of this study was to develop a deep learning based method for accelerated MR parametric mapping with good performance at high acceleration rate both by reducing the contrast number and undersampling the k-space data.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords