Meeting Banner
Abstract #1348

Deep Learning Based Super-resolution of Diffusion MRI Data    

Zifei Liang1 and Jiangyang Zhang1
1Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, NEW YORK, NY, United States

Deep-learning/machine-learning based super-resolution techniques have shown promises in improving the resolution of MRI without additional acquisition. In this study, we examined the capability of deep-learning based super-resolution using a newly developed network at resolutions from 0.2 mm to 0.025 mm. We also investigated whether the networks were able to enhance data acquired with a different contrast. Our results demonstrated that the enhancement of deep learning based super-resolution, although better than cubic interpolation, remained limited. In order to achieve the best performance, the network needs to be trained using data acquired at the target resolution and share similar contrasts.

This abstract and the presentation materials are available to members only; a login is required.

Join Here