Respiratory motion is a big problem in abdominal T2W imaging. PROPELLER sequence is an excellent solution for motion artifact. However, it requires longer acquisition than FSE, limiting its wider adoption in clinical situations. Here, we propose to use a deep learning-based parallel imaging reconstruction for accelerating PROPELLER. Our approach applies deep learning to the reconstruction of blade images. Thus, training is robust to respiratory motion because blade data can be obtained with single shot. Preliminary results showed that the proposed method significantly outperformed SENSE reconstruction.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords