The long acquisition-time and the semi-quantitative nature of the typical CEST-MRI experiment constitute a major obstacle for its clinical adoption. Recently, a machine-learning approach termed AutoCEST was developed, for the automatic design of the optimal acquisition schedule and the reconstruction of quantitative 2-pool CEST maps. Here, we expand this approach for in-vivo scenarios, by incorporating the semisolid-pool into the underlying computational-graph and allowing 3 pools. AutoCEST was evaluated for quantitative rNOE mapping using a GBM mouse model, resulting in a total acquisition and reconstruction times of 49.15s. The tumor rNOE volume-fraction was significantly decreased, in agreement with previous human studies.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords