Meeting Banner
Abstract #1510

Resting-State Functional Connectivity Predicts Cognitive Impairment Related to Type 2 Diabetes Mellitus

An ping Shi1 and Xi yang Tang2
1Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi, China, 2Department of thoracic surgery, Tangdu Hospital, Air Force Medical University., Xi'an, China

Resting-state functional connectivity (RSFC) patterns of the human brain show unique inherent or intrinsic characteristics, similar to a fingerprint. There is significant interest in using RSFC to predict human behavior. Inspired by previous RSFC fingerprinting studies, we adopted whole-brain RSFC as discriminative features to predicted the MoCA scores in 102 individuals with T2DM, using a connectome-based predictive modeling (CPM). We find that, the identified CPM, based on whole-brain RSFC patterns, are strong for predicting the MoCA scores in T2DM. The application of CPM to predict neurocognitive abilities can complement conventional neurocognitive assessments and aid the management of people with T2DM.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords