Deep learning (DL) has shown promise for faster, high quality accelerated MRI reconstruction. However, standard supervised DL methods depend on extensive amounts of fully-sampled, ground-truth data and are sensitive to out-of-distribution (OOD), particularly low-SNR, data. In this work, we propose a semi-supervised, consistency-based framework (termed Noise2Recon) for joint MR reconstruction and denoising that uses a limited number of fully-sampled references. Results demonstrate that even with minimal ground-truth data, Noise2Recon can use unsupervised, undersampled data to 1) achieve high performance on in-distribution (noise-free) scans and 2) improve generalizability to noisy, OOD scans compared to both standard and augmentation-based supervised methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords