Meeting Banner
Abstract #1774

ENSURE: Ensemble Stein’s Unbiased Risk Estimator for Unsupervised Learning

Hemant Kumar Aggarwal1, Aniket Pramanik1, and Mathews Jacob1
1Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States

Deep learning algorithms are emerging as powerful alternatives to compressed sensing methods, offering improved image quality and computational efficiency. Fully sampled training images are often difficult to acquire in high-resolution and dynamic imaging applications. We propose an ENsemble SURE (ENSURE) loss metric to train a deep network only from undersampled measurements. In particular, we show that training a network using an ensemble of images, each acquired with a different sampling pattern, using ENSURE can provide results that closely approach MSE training. Our experimental results show comparable reconstruction quality to supervised learning.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords