Deep learning in k-space has demonstrated great potential for image reconstruction from undersampled k-space data. However, existing deep learning-based image reconstruction methods typically apply weight-sharing convolutional neural networks to k-space data without taking into consideration the k-space data’s spatial frequency properties, leading to ineffective learning of the image reconstruction models. To improve image reconstruction performance, we develop a residual Encoder-Decoder network architecture with self-attention layers to adaptively focus on k-space data at different spatial frequencies and channels for interpolating the undersampled k-space data. Experimental results demonstrate that our method achieves significantly better image reconstruction performance than current state-of-the-art techniques.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords