Meeting Banner
Abstract #2184

High resolution PET image denoising using anatomical priors by K-nearest neighborhood method in the feature space

Mehdi Khalighi1, Timothy Deller2, Kevin Chen1, Tyler Toueg3, Dawn Holley1, Kim Halbert1, Floris Jansen2, Elizabeth Mormino3, Michael Zeineh1, Farshad Moradi1, Greg Zaharchuk1, and Andrei Iagaru1
1Radiology, Stanford University, Stanford, CA, United States, 2Engineering Dept., GE Healthcare, Waukesha, WI, United States, 3Neurology, Stanford University, Stanford, CA, United States

After PET images are reconstructed by OSEM, a spatial filter which exploits the correlation between neighboring voxels, is applied to remove noise. A new filtering method is proposed that also exploits the correlation between voxels from the same tissue. Anatomical priors are processed for bias correction and registered to PET images. For each voxel, similar voxels within the PET volume are identified using KNN method in the feature-space built by anatomical priors. These similar voxels and also the neighboring voxels are then used to remove the high frequency noise on PET images using a Gaussian and a weighted averaging filter.

This abstract and the presentation materials are available to members only; a login is required.

Join Here