No existing phase unwrapping technique achieves completely accurate unwrapping. Therefore, we trained a convolutional neural network for phase unwrapping on (flipped and scaled) brain images from 12 healthy volunteers. An exact model of phase unwrapping was used: ground-truth (label) phase images (unwrapped with an iterative Laplacian Preconditioned Conjugate Gradient technique) were rewrapped (projected into the 2π range) to provide input images. This novel model can be used to train any neural network. Networks trained using masked (and unmasked) images showed unwrapping performance similar to state-of-the-art SEGUE phase unwrapping on test brain images and showed some generalisation to pelvic images.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords