Meeting Banner
Abstract #2412

Improving ASL MRI Sensitivity for Clinical Applications Using Transfer Learning-based Deep Learning

Danfeng Xie1, Yiran Li1, and Ze Wang1
1Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States

This study represents the first effort to apply transfer learning of Deep learning-based ASL denoising (DLASL) method on clinical ASL data. Pre-trained with young healthy subjects’ data, DLASL method showed improved Contrast-to-Noise Ratio (CNR) and Signal-to-Noise Ratio (SNR) and higher sensitivity for detecting the AD related hypoperfusion patterns compared with the conventional method. Experimental results demonstrated the high transfer capability of DLASL for clinical studies.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords