Meeting Banner
Abstract #2427

Multi-contrast CS reconstruction using data-driven and model-based deep neural networks

Tomoki Miyasaka1, Satoshi Funayama2, Daiki Tamada2, Utaroh Motosugi3, Hiroyuki Morisaka2, Hiroshi Onishi2, and Yasuhiko Terada1
1Institute of Applied Physics, University of Tsukuba, Tsukuba, Japan, 2Department of Radiology, University of Yamanashi, Chuo, Japan, 3Department of Radiology, Kofu-Kyoritsu Hospital, Kofu, Japan

The use of deep learning (DL) for compressed sensing (CS) have recently received increased attention. Generally, DL-CS uses single-contrast CS reconstruction (SCCS) where the single-contrast image is used as the network input. However, in clinical routine examinations, different contrast images are acquired in the same session, and CS reconstruction using multi-contrast images as the input (MCCS) has the potential to show better performance. Here, we applied DL-MCCS to brain MRI images acquired during routine examinations. We trained data-driven and model-based networks, and showed that for both cases, MCCS outperformed SCCS.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords