Meeting Banner
Abstract #2698

Recurrent U-Net Based Temporal Regularization for Dynamic Undersampled Reconstruction in OSSI fMRI

Shouchang Guo1 and Douglas C. Noll2
1Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States, 2Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States

Using deep learning for undersampled reconstruction has shown advantages for structural MRI and dynamic MRI, but is not commonly used for fMRI. In this work, we propose a neural network based reconstruction with temporal regularization to exploit the temporal redundancy of oscillating steady-state fMRI images. With a factor of 6 undersampling, the proposed method outperforms other approaches such as cascade of convolutional neural networks with high-resolution and high-quality fMRI results.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords