Diffusion tensor imaging (DTI) is a valuable technique for interrogating tissue microstructure, but the estimated parameters remain an indirect characterisation of the underlying tissue architecture. For direct measurement of biophysical parameters, we propose a two-compartment model to quantify cardiomyocyte radius, volume fraction, and dispersion. The intra- and extra-cellular space were modelled using a cylinder with Bingham distributed axes and an oblate tensor. The model reduced root mean squared error by 5% compared to DTI, with volume fraction = 60%, radius = 5.8𝜇m, and dispersion in the sheetlet plane = 9°. These parameters could serve as biomarkers for characterisation of cardiomyopathies.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords