We proposed an automatic evaluation model for estimating the degree of motion artifacts in high-resolution multi-echo gradient echo images for nigrosome-1 visualization in the substantia nigra. A combination of a convolutional neural network and a long short-term memory was used to develop the automatic motion evaluation model. The results demonstrated that the proposed model could be useful tools for N1 visualization for diagnosing Parkinson’s disease.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords