Meeting Banner
Abstract #3049

Quantification of transverse relaxation times in vivo at 7T field-strength.

Jochen Schmidt1, Dvir Radunsky2, Patrick Scheibe1, Noam Ben-Eliezer2,3,4, Nikolaus Weiskopf1,5, and Robert Trampel1
1Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 2Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel, 3Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel, 4Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States, 5Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany

Accurate quantification of transverse relaxation times in vivo is of vital importance for research and clinical applications. At higher field-strength, the gain in signal enables T2 mapping at sub-millimetre resolutions, but with infeasible scan time for standard spin-echo techniques. Using CPMG echo trains reduces the acquisition time. However, inhomogeneities of the transmit B1 field hamper accurate T2 quantification. Correcting for resulting bias effects is possible through signal response simulations via the Bloch equations using the specific sequence parameters. Matching acquired data to the simulated signal points allows accurate and robust fitting of T2 values as shown by our 7T study.

This abstract and the presentation materials are available to members only; a login is required.

Join Here