The apparent transverse relaxation rate (R2*) has biologically-relevant dependence on iron content and myelination. However confounding factors, e.g. flip angle dependence owing to differential longitudinal relaxation rates of sub-compartments, hinder interpretation. Multi-compartment models have been used to estimate myelin-water fraction from multi-echo spoiled GRE images, but require rich datasets for reliable estimation leading to extended acquisition times. A time-efficient alternative is to assume mono-exponential intra-voxel decay. In this work, we characterise the residual FA-dependence of such R2* estimates in vivo, and explore the biological origin of this dependence via simulations.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords