Meeting Banner
Abstract #3264

Deep-learning-based noise reduction incorporating inhomogeneous spatial distribution of noise in parallel MRI imaging

Atsuro Suzuki1, Chizue Ishihara1, Yukio Kaneko1, Tomoki Amemiya1, Yoshitaka Bito1, and Toru Shirai1
1Healthcare Business Unit, Hitachi, Ltd., Kokubunji-shi, Japan

To reduce inhomogeneous noise caused by parallel imaging, we developed a deep-learning-based noise reduction method that incorporates spatial distribution of noise. For noise distribution we used a g-factor map segmented into high and low g-factor regions. We reduced the noise by using a different optimized network in each region. Finally, a denoised image was generated by combining the two denoised regions. Denoised brain images demonstrated improved signal to noise ratio (SNR) and mean square error (MSE) between denoised and full sampling images throughout the brain regions. Our method was able to reduce the inhomogeneous noise proportional to the noise intensity.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords