We propose a stacked U-NET architecture to automatically segment the tongue, velum, and airway in speech MRI based on hybrid learning. Three separate U-nets are trained to learn the mapping between the input image and their specific articulator. The two U-NETs to segment the velum, and tongue are based on transfer learning, where we leverage open-source brain MRI segmentation. The third U-NET for airway segmentation is based on classical training methods. We demonstrate the utility of our approach by comparing against manual segmentations.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords