We propose a framework to achieve high-resolution whole-brain conductivity tensor imaging (CTI) with MRI at low frequencies. Our methodology overcomes the limitations of previous approaches based on B1 mapping techniques, both in terms of spatial resolution and brain coverage. This was attained by combining high-frequency conductivity estimates derived from a water-mapping technique with multi-b-value diffusion tensor imaging data. We obtained conductivity values for grey matter and white matter that are in line with previous studies. Overall, our findings highlight noteworthy within- and between- subject variability of the conductivity values.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords