Meeting Banner
Abstract #3846

On the effect of fat spectrum complexity in Dixon MR Fingerprinting

Elizabeth Huaroc1, Dominik Weidlich1, Thomas Amthor2, Peter Koken2, Manuel Baumann2, Kilian Weiss3, Marcus Makowski1, Benedikt Schwaiger4, Mariya Doneva2, and Dimitrios Karampinos1
1Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany, 2Philips Research Lab, Hamburg, Germany, 3Philips Healthcare, Hamburg, Germany, 4Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany

Dixon Magnetic Resonance Fingerprinting (Dixon-MRF) has been emerging for achieving efficient fat suppression in body applications of MRF. Fat quantification using traditional Dixon imaging relies on a pre-calibrated proton density fat spectrum. The fat spectrum is known to be composed of different fat peaks, which have different relaxation times and are affected by J-coupling modulations. Existing Dixon-MRF methods perform water-fat separation assuming a constant pre-calibrated fat spectrum and not accounting how the complex fat spectrum varies along the MRF flip angle train. The present work proposes a framework to characterize the effect of fat spectrum complexity in Dixon-MRF.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords