Meeting Banner
Abstract #3963

Universal parallel transmit pulses for a 2-dimensional local excitation target pattern at 9.4T

Ole Geldschläger1, Dario Bosch1,2, and Anke Henning1,3
1High-field Magnetic Resonance, Max-Planck-Institute for biological Cybernetics, Tübingen, Germany, 2Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany, 3Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States

In this study, the concept of ‘Universal pTx pulses’ for local excitation is tested in vivo at 9.4T. Based on B0/B1+ maps from eight different subject heads, universal pulses for a 2-dimensional local excitation target pattern were designed. The pulses aiming to excite the visual cortex of the human brain (with a flip angle of 90 and 7 degree, respectively), while the remaining areas should experience no effective excitation.

In simulations and in vivo at 9.4T, the resulting universal pules perform just slightly worse compared to the subject specific tailored pulses (on non-database heads).

This abstract and the presentation materials are available to members only; a login is required.

Join Here