Meeting Banner
Abstract #0041

Radiomic Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Metastatic Risk

Mohammad Alhusseini1, Adrian L Breto1, Isaac L Xu1, Ahmad Algohari1, Sandra M Gaston1, Matthew C Abramowitz1, Alan Dal Para1, Sanoj Punnen2, Alan Pollack1, and Radka Stoyanova1
1Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States, 2Department of Urology, University of Miami Miller School of Medicine, Miami, FL, United States

Synopsis

Circulating tumor cells (CTCs) have been shown to be an indicator for metastatic risk in prostate cancer. We investigated the association between radiomics features extracted from multiparametric MRI of the prostate and CTC counts in prostate cancer patients enrolled in two institutional clinical trials (n=71). We trained a neural network to predict the dichotomized CTCs counts, defined by a 5 CTCs threshold. The top seven features, ranked using maximum-relevance minimum-redundancy, were used as input to a neural network. The training and testing were repeated for 100 runs of 5-Fold cross validation, resulting in AUC 0.834 to predict CTCs ≥ 5.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords