Training deep neural networks for medical imaging commonly requires large image datasets and paired label datasets. However, in the medical imaging research field, labeling costs are very expensive. To overcome this issue, we propose a data generation method which is StyleGAN2-based architecture that jointly generates multi-contrast magnetic resonance (MR) images and segmentation maps. The effectiveness of our generation model is validated in terms of segmentation performance for tumors. We demonstrate that the segmentation model only trained with the fake data generated from our method achieves comparable performance to that trained with real data.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords