Meeting Banner
Abstract #0200

A Deep-Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging

Loredana Storelli1, Matteo Azzimonti1,2, Mor Gueye1,2, Paolo Preziosa1,2, Carmen Vizzino1, Gioacchino Tedeschi3, Nicola De Stefano4, Patrizia Pantano5,6, Massimo Filippi1,2,7,8,9, and Maria A. Rocca1,2,9
1Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy, 2Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 3Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania “Luigi Vanvitelli”, Maples, Italy, 4Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy, 5Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy, 6IRCCS NEUROMED, Pozzilli, Italy, 7Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 8Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy, 9Vita-Salute San Raffaele University, Milan, Italy

Synopsis

Artificial intelligence (AI) approaches have been applied in several fields of multiple sclerosis (MS) in recent years. However, their application to predict disease progression remains largely unexplored. In this study, we obtained a robust and accurate AI tool for predicting clinical and cognitive evolution at two years for MS patients, based on just T1-weighted and T2-weighted brain MRI scans at baseline visit, which exceeded the performance of two expert physicians blinded to patients’ clinical history. This algorithm has the potential to be an important tool to support physicians for a prompt recognition of MS patients at risk of disease worsening.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords