Meeting Banner
Abstract #0201

A Multi-Stage 3D Patch-wise Deep Learning Algorithm for Detection of New Multiple Sclerosis Lesions in Longitudinal MRI

Junghwa Kang1, Siyun Jung1, Jeongmin Yim2, Jinhee Jang3, and Yoonho Nam1
1Division of biomedical engineering, Hankuk University of Foreign Studies, gyunggi-do,yongin-si, Korea, Republic of, 2College of Medicine, Catholic University of Korea, Seoul, Korea, Republic of, 3Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea, Republic of

Synopsis

Detecting changes in multiple sclerosis (MS) lesions through follow-up MR images is an important but time-consuming and subjective process. In this work, we propose a fully automatic deep learning-based method to detect new MS lesions. The model was trained and tuned using the MSSEG2 challenge dataset. First, the brain and spinal cord masks were generated, and registration between two time points was performed. Then, new lesions and whole lesions were segmented by patch-wise inputs, respectively. The final mask for new lesions was produced by comparing these two segmentations, and in this way we could effectively reduce false-positives.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords