This works explores the use of data-driven Markov chains that are constructed from generative models for Bayesian MRI reconstruction, where the generative models utilize prior knowledge learned from an existing image database. Given the measured k-space, samples are then drawn from the posterior using Markov chain Monte Carlo (MCMC) method. In addition to the maximum a posteriori (MAP) estimate for the image which is obtained with conventional methods, also a minimum mean square error (MMSE) estimate and uncertainty maps can be computed from these samples.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords