Meeting Banner
Abstract #0378

Deciphering the compartmental origin of glucoCEST signal using diffusion-weighted CEST-MRS

Yohann Mathieu-Daudé1, Mélissa Vincent1, Julien Valette1, and Julien Flament1
1Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France


Compartmental origin of glucoCEST signal is still an ongoing debate. To address this crucial question, we propose in this study to use diffusion-weighted CEST-MRS in order to disentangle extracellular/extravascular and intracellular contributions to the glucoCEST signal. D-glucose and 2-deoxy-D-glucose were injected intravenously and kinetics of glucoCEST signal were measured over time. The comparison of kinetics acquired with and without diffusion grandients showed that 2-deoxy-D-glucose glucoCEST signal was dominated by intracellular contribution, contrarily of D-glucose. This study could constitute a major step toward glucoCEST quantification and could be beneficial for several applications, especially to study energy metabolism defects in neurodegenerative disorders.

This abstract and the presentation materials are available to members only; a login is required.

Join Here