Meeting Banner
Abstract #0556

Registration and quantification net (RQnet) for IVIM-DKI analysis

Wonil Lee1, Giyong Choi1, Jongyeon Lee1, and HyunWook Park1
1Electrical Engineering, KAIST, Daejeon, Korea, Republic of

Synopsis

Accurate alignment of multiple diffusion-weighted images must be preceded to predict accurate diffusion parameters. A number of registration approaches have been studied (1,2). However, most of them minimize the dissimilarity between diffusion weighted image and a reference, which can cause errors because the characteristics of the images are different. In order to accurately investigate diffusion, perfusion, and kurtosis parameters using hybrid IVIM-DKI model, a deep learning network is proposed as an end-to-end fashion. This method is entirely unsupervised learning, which does not require reference image for registration and the labeled IVIM-DKI parameters for registration and quantification.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords