Meeting Banner
Abstract #0657

Length-dependent spatial distribution of short fiber bundles revealed with the mesoscopic Chenonceau dataset

Alexandros Popov1, Ivy Uszynski1, Bastien Herlin1, Maelig Chauvel1, Igor Maldonado2, Christophe Destrieux2, and Cyril Poupon1
1BAOBAB, NeuroSpin, CEA, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France, France, 2iBrain U1253, Université de Tours, CHU Bretonneau, INSERM, Tours, France

Synopsis

Mesoscopic diffusion datasets allow to study the superficial tracts of the human brain. We exploit the new Chenonceau Dataset, an ultra-high resolution diffusion-weighted dataset, to investigate the organization of short fibers ( between 10 and 60 mm ) in the whole brain.

To achieve this goal, we process the dense Chenonceau connectogram with a hierarchical clustering algorithm to obtain coherent fiber bundles, sorted over a centimetric range. It leads to the first density mapping of short fibers across the whole human brain. This mapping displays important inter-hemispheric variations, supporting the functional lateralization of various functional networks.

This abstract and the presentation materials are available to members only; a login is required.

Join Here