Motion correction (MoCo) is an important pre-processing step for pixel-by-pixel myocardial blood flow (MBF) quantification from cardiac perfusion MRI. It may also improve throughput of visual evaluation of perfusion images. One commonly used method for MoCo is optical flow (OF), which requires a moderate level of computational demand. In this study, we sought to perform rapid MoCo of respiratory motion on cardiac perfusion images using deep learning (DL). Our results show that the proposed DL MoCo performs 418-times faster than the reference OF approach without loss in accuracy.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords