Meeting Banner
Abstract #0925

Automatic Prostate Tumor Segmentation: Does the Convolutional Neural Network Learn How the Tumor Looks, or What the Radiologist Sees?

Deepa Darshini Gunashekar1, Lars Bielak1,2, Benedict Oerther 3, Matthias Benndorf 3, Anca Grosu 2,3, Constantinos Zamboglou2,3, and Michael Bock 1,2
1Dept.of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany, 2German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany, Freiburg im Breisgau, Germany, 3Dept.of Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

Synopsis

A convolutional neural network was implemented to automatically segment tumors in multi-parametric MRI data. The influence of the variability in the ground truth data was evaluated for automated prostate tumor segmentation. Therefore, the agreement between the predictions of the CNN was measured with co-registered whole mount histopathology images and the tumor contours drawn by an expert radio-oncologist. The results indicate that the network can discriminate tumor from healthy tissue rather than mimicking the radiologist.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords