RAKI is a scan-specific k-space interpolation technique based on deep convolutional networks, which bears superior noise resilience compared to GRAPPA. However, RAKI may introduce severe blurring in image reconstruction due to reduced number of autocalibration signal lines at higher acceleration factors. We propose Gradual RAKI, which exhibits the benefit of mixing RAKI and GRAPPA in a preparatory block for data augmentation purposes prior to a conventional RAKI reconstruction. Data augmentation provides an effective way to create synthetic ACS lines out of 8 original ACS lines at 4-fold acceleration, while valuable features are retained from both RAKI and GRAPPA reconstruction methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords