Machine Learning (ML) methods have evolved tremendously during the last decade. A number of frameworks support the development of new ML methods. However, support for high-dimensional and complex-valued data processing is often limited. Therefore, we propose a Machine Enhanced Reconstruction Learning and Interpretation Networks (MERLIN) framework that seamlessly integrates with existing ML solutions such as Tensorflow/Keras and Pytorch and complements them by high-dimensional, complex-valued and MR-specific operators and layers. Furthermore, standard data processing pipelines in Python are provided in the context of MRI reconstruction.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords