Many Parallel MRI algorithms (e.g. Sensitivity Encoding (SENSE)) require knowledge of the receiver coil sensitivity maps. Magnetic field strength is an important factor in defining the sensitivity maps of the receiver coils in MRI. This paper presents a method to estimate the receiver coil sensitivity maps of a higher magnetic field strength scanner utilizing a deep learning network (denoted as ResU-Net-34), initially trained on the receiver coil sensitivity maps of a lower field strength scanner using transfer learning. SENSE reconstruction results show a successful domain transfer between the receiver coil sensitivities of different magnetic field strengths with the proposed method.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords