Meeting Banner
Abstract #1159

GRASPNET: Spatiotemporal deep learning reconstruction of golden-angle radial data for free-breathing dynamic contrast-enhanced MRI

Ramin Jafari1, Richard Kinh Gian Do1, Maggie Fung2, Ersin Bayram2, and Ricardo Otazo1
1Memorial Sloan Kettering Cancer Center, New York, NY, United States, 2GE Healthcare, New York, NY, United States

Synopsis

GRASP is a valuable tool to perform free-breathing dynamic contrast-enhanced (DCE) MRI with high spatial and temporal resolution. However, the 4D reconstruction algorithm is iterative and relatively long for clinical studies. In this work, we present a spatiotemporal deep learning approach to significantly reduce the reconstruction time without affecting image quality.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords