Brain cancer screening utilizing MRI suffers from a bottleneck by requiring 3D acquisitions before and after contrast injection. We designed a novel two-stage deep learning reconstruction pipeline to accelerate 3D brain MRI over conventional 2-fold parallel imaging accelerations used in clinical practice. Using modular deep neural networks, we removed the dependence on one all-encompassing network. We successfully dealiased brain images at higher accelerations and with structural fidelity in lesions superior to conventional clinical imaging. Our method was validated on pathologies unseen during training using qualitative evaluation from an expert neuroradiologist and achieved comparable scores to conventional 2-fold clinical accelerations.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords