Accelerating MRI acquisition is always in high demand, since long scan time can increase the potential risk of image degradation caused by patient motion. Generally, MRI reconstruction at higher undersampling rates requires regularization terms, such as wavelet transformation and total variation transformation. This work investigates employing the plug-and-play (PnP) ADMM framework to reconstruct highly undersampled MRI k-space data with three different denoiser algorithms: block matching and 3D filtering (BM3D), weighted nuclear norm minimization (WNNM) and residual learning of deep CNN (DnCNN). The results show that these three PnP-based methods outperform current regularization methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords