In this study, we prepared a 15N-enriched analog of NAD+ (N-methyl nicotinamide = MNA+) and demonstrated that it undergoes reduction by sodium dithionate to form MNAH. The 15N chemical shifts of the oxidized and reduced forms differ by 124.2ppm. DNP of MNA+ followed by dissolution and 15N NMR showed a favorable T1 relaxation time of 130s at 1T and 50s at 3T. Deuteration of the methyl protons only increased the T1 of 15N by ~10s. The long T1 of 15N in these NAD+/NADH mimetics and the large chemical shift difference offer the exciting potential for their use as redox sensors.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords